
(GAB)
GENERIC ARCNET BOARD

MANUAL

Brookhaven National Laboratory
Version 1.0

BY Jack Fried (email jfried@inst.inst.bnl.gov)
Web page (http://www.inst.bnl.gov/~jfried)

INTRODUCTION

The objective behind the Generic ARCNET Board was to create a reliable control
system that can be networked and controlled from a single location. The GAB can chain
up to 220 nodes per network using a Contemporary Control System HUB. A fiber from
the HUB will go to a workstation with an ARCNET interface card to control the network.
Multiple ARCNET cards can be placed in the workstation to control many networks of
220 nodes.

The generic ARCNET board was designed for PHENIX Front End Modules
(FEM) in mind, however its broad design makes it ideal for any application that requires a
reliable slow control system. The software the GAB runs essentially determines its
functionality, and with its software download feature it allows the user to change its
functionality on the fly.

The GAB was designed to work in a high magnetic field making it capable of
running on any PHENIX FEM. The I/O port and the 16 Chip Selects makes its integration
into a system straightforward. FEM designers will have to write C code for the GAB,
which will be specific to their hardware. A generic program will be made available that can
handle standard I/O commands.

HARDWARE:

1. INTRODUCTION
2. OVERVIEW
3. GAB SIGNALS
4. SIGNAL DESCRIPTION
5. MEMORY MAP
6. GAB POWER REQUIREMENTS
7. EXTERNAL READ & WRITE MEMORY CYCLE

SOFTWARE:

1. INTRODUCTION
2. BOOT CODE
3. SOFTWARE REQUIREMENTS
4. USER FUNCTIONS PROGRAM
5. SAMPLE PROGRAM
6. GFEM.H

A.
1. GAB HEADER AND ERROR IDENTIFIERS
2. GAB HARDWARE JUMPERS

B.
1. BOOT CODE FUNCTION CALLS

C.
1. WHAT YOU NEED TO GET STARTED

D.
1. HARDWARE EXAMPLES

 CON2 CON1

Introduction

The Generic ARCNET BOARD (GAB) is a universal microcontroller module based on
the SMC COM20051 microcontroller running at a 16 MHZ clock frequency. The
microcontroller’s integrated ARCNET controller and the on board MAX1480A
transceiver provide an optoisolated DC RS-485 ARCNET NODE. The I/O capabilities
makes this board especially suitable to serve as an intelligent general purpose node in
controlling PHENIX FEM’s and other applications.

The GAB can be mounted on an application-specific motherboard via 2 S-BUS
connectors (amp #174216-3), through which most of the microcontroller’s I/O pins are
available.

An 8-bit node ID from S-BUS connectors provide the ARCNET board with an
identifier, which in principle enables the use of up to 256 GAB modules (no more than 220
nodes per network is recommended).

The software it runs essentially determines the GAB functionality. The SMC
COM20051 can address 64K bytes of RAM and FLASH ROM - 256 bytes from RAM
used for memory mapped I/O.

The GAB does not require the use of an emulator; its software can be programmed
into the FLASH ROM via ARCNET. This enables rapid system development in allowing
the user to test different version of firmware quickly. The firmware can be updated in-
system allowing for system upgrades and repairs.

Overview

The GAB features

• 80c31 CPU
• 16 MHZ CLOCK
• 64K RAM
• 64K FLASH ROM
• 8 bit I/O port
• 256 bytes (available for memory mapped I/O)
• 1 serial port OR 2 bit bi-directional I/O port
• 2 bit I/O port (dedicated)
• Automatic reset on power-up
• 16 user definable chip selects
• Two standard 16 bit counters.
• ARCNET software interface built-in
• Firm ware upload feature up to 39K
• Token removal (turn off ARCNET stop noise)
• 2.5Mbits/s data rate (ARCNET)
• works in high magnetic fields (external power supply needed)
• optoisolation between each node.

GAB SIGNALS

GND = 0V VDD = +5V

Pin CON1 CON2
1 CS15 A15O
2 CS13 GND
3 CS11 A13O
4 CS9 GND
5 CS7 A11O
6 CS5 GND
7 CS3 A9O
8 CS1 GND
9 P7O A7O
10 P5O GND
11 P3O A5O
12 P1O GND
13 PW A3O
14 PRR GND

15 VDD A1O
16 VDD GND
17 VDD D7
18 VDD GND
19 VDD D5
20 VDD GND
21 VDD D3
22 VDD GND
23 VDD D1
24 VDD GND
25 VDD RD
26 CS14 A14O
27 CS12 GND
28 CS10 A12O
29 CS8 GND
30 CS6 A10O
31 CS4 GND
32 CS2 A8O
33 CS0 GND
34 P6O A6O
35 P4O GND
36 P2O A4O
37 P0O GND
38 RXD A2O
39 TXD GND
40 EXT_RESET A0O
41 PR GND
42 IN_RESET D6
43 ID7 GND
44 ID6 D4
45 ID5 GND
46 ID4 D2
47 ID3 GND
48 ID2 D0
49 ID1 GND
50 ID0 WR

 SIGNAL DESCRIPTION.

SIGNAL
NAME

DIRECTION CONNECTOR
LOCATION

PIN NUMBER DESCRIPTION

A0O-A15O O CON2 40,15,38,13,36,
11,34,9,32,7,30,
5,28,3,26,1

ADDRESS LINE:
Latched address from the SMC COM20051

D0O-D7O I/O CON2 48,23,46,21,44,
19,42,17

DATA BUS :
Data lines from the SMC COM20051

/RD O CON2 25 Active low “read memory “
/WR O CON2 50 Active low “write memory”
CS0-CS15 O CON1 33,8,32,7,31,6,3

0,5,29,4,,28,3,2
7,2, 26,1

CHIP SELECTS:
Used to generate levels or pulses and can be
used as 2 8-bit output ports.
CS0-CS7 located at memory address 0xfefd
CS8-CS15 located at memory address 0xfefe

P0O-P7O I/O CON1 37,12,36,11,35,
10,34,9

I/O PORT:
8 bit bi-directional port. P1 = “P1.0 – P1.7”

ID0-ID7 I CON1 50,49,48,47,46,
45,44,43

NODE ID”
 Used to set the board’s unique node id.
Located at memory address 0xfeff

/PW O CON1 13 PORT WRITE: = P3.3
Active low signal used to indicate the
direction of the 8-bit I/O port. When PW is
low the I/O port is outputting data.

RXD I/O CON1 38 RECEIVE SERIAL: = P3.1
This pin can be used as an single bit I/O or it
Can be used with TXD to generate a serial
port.

TXD I/O CON1 39 TRANSMIT SERIAL: = P3.2
This pin can be used as an single bit I/O or it
Can be used with RXD to generate a serial
port.

PRR O CON1 14 One bit I/O P3.2
PR I/O CON1 41 One bit I/O P3.5
EXT_RESET I CON1 40 External reset
IN_RESET O CON1 42 Internal reset (MAX 708)

0000

7FF

800

57FF

6000

FDFF

FE00

FEF9

FF00

FFFF

0000

3FFF

4000

FFFF

FEFF

FF00

DFFF

E000

RAM ROM

BOOT PROGRAM
MEMORY

HOPPER
MEMORY

USER FUNCTION
PROGRAM
MEMORY

CAN BE USED FOR
MEMORY MAPPED I/O

ARCNET CORE

BOOT CODE

FEM USER
FUNCTIONS

ARCNET CORE

RESERVED

 63.5K RAM 39K ROM

22K RAM

39K RAM

GENERIC ARCNET MEMORY SPACE
(COM20051)

FEFA-FEFF RESERVED

MEMORY MAP

GAB POWER REQUIREMENT

The generic ARCNET board power requirements are:

Magnetic field not present (using on board DC to DC converter)

 VDD +5V
 I 240ma

Within a magnetic field (power for isolated rs485 supplied externally)

Power from board

 VDD +5V
 I 210ma

External power

 VDD +5V
 I 30ma

EXTERNAL DATA MEMORY WRITE CYCLE

Parameter Min Typ Max Units
T3
T4
T6
T7
T9
T10

WR high to Address not valid
WR Pulse Width
Data Hold After WR
Address Valid to WR low
Data Valid to WR Transition
Data Valid to WR High

22.5
275
12.5
120
2

287.5

ns
ns
ns
ns
ns
ns
ns

A0-A15

A0-A7 DATA IN

WR*

D0-D7

A0-A15

t7

t9 t4

t10

t6

t3

EXTERNAL DATA MEMORY READ CYCLE

Parameter Min Typ Max Units
T4
T5
T7
T8
T9
T10
T11
T12

RD to Address not valid
RD Pulse Width
Address to Valid in
RD Low to Address to Float (GAB internal)
RD Low to Valid Data In
Data Hold After RD
Data Float After RD
Address valid to RD Low

22.5
275

0

120

397.5
0

147.5

55
0

ns
ns
ns
ns
ns
ns
ns

A0-A15

t11

t10

t12

t8

t9

t5

t7

A0-A15

D0-D7

RD*

DATA IN

t4

SOFTWARE:

INTRODUCTION

The GAB software consists of two parts. The Boot Code (BC) which resides on
the protected part of Flash ROM and the FEM User Functions (FUF). The complexity of
setting up and controlling the network is part of the BC and is not seen by the FUF
thereby simplifying the FUF code. The FUF code is written by the end user and can be
uploaded to the GAB at any time.

The BC can call either, built in functions or user functions. The BC functions are
listed here but are explained in section B.
• PROGRAM FLASH ROM
• RESET BOARD
• TURN OFF TOKEN
• TURN ON TOKEN
• ECHO MEMORY
• BOARD RESPOND
• CALL USER FUNCTION

The network commands that are built into the BC can be accessed from the FUF
to send or receive data. The BC commands that are used in the FUF are accessed in the
GFEM.H file.

BOOT CODE

The boot code first initializes the ARCNET node and then waits for data to arrive.
Once data has arrived and its packet header is analyzed the BC will then ignore or store
the packet in HOPPER memory (look at memory map). If there is more than one packet
(507 bytes) the BC will continue to receive the rest of the data. After all the data has been
received (a maximum of 39 K bytes) the BC will then reread the header and then decide
to call the FUF or one of the other BC functions. The boot code flow chart is shown
below.

START

Init ARCNET

Check network for any
incoming data.

If packet received

Read and store header

Copy N packets to 8031
memory space

If cmd word = program
EEPROM

Copy EEPROM Prog. ALG.
to external RAM.

(same memory location in
ROM and RAM)

EEPROM programming
algorithm

Software reset
check if EEPROM PGB

is set

RUN User Function Block

Return error to control
board.

IF ERROR

YES

YES

NO

YES

NO

YES

NO

NO

FEM BOOT PROG. ALGORITHM

If cmd word = Reset
Board

If cmd word = Token
OFF

If cmd word = Token
On

If cmd word = ECHO
MEMORY

If cmd word = Board
Respond

NO

NO

NO

NO

NO

YES

Turn Off Transmiter and turn
on recive all. (The node can
recive packets but it can not
send anything since it nver

gets the token)

YES

Turn ON Transmiter and turn
off recive all. (The node now

will get a token)
YES

Read the header to find out
how many bytes to send

X= num bytes
YES

Send a message respond
message to main computerYES

Send X bytes back to main
computer

SOFTWARE REQUIREMENTS
The FUF software requirements are as follows

• The FUF must not run an infinite loop
• The FUF must return to the BC after executing a command
• The FUF must observe the memory boundaries as shown in the memory map
• The FUF software must be linked with cl80.r03 and gfem.h

The BC is not interrupt driven and consequently if the FUF never returns to the BC that
node will not respond on the network. It can only be restarted by a hardware reset (a glink
reset or a power shut down).

START

Set up header
information

Call user function

cmd == read
version and board

type

cmd == function1

cmd == function 2

cmd == Function 3

END

Return board type and
FUF version #

Run
Function 1

Run
Function 2

Run Function 3

IF error send error
message

Yes

Yes

Yes

Yes

No

No

No

No

No

FEM User function block

USER FUNCTION PROGRAM

The user function program structure is laid out in this document. Cretin routines
that the FUF will require performing such as receiving and sending data will be discussed
in the next few sections. An explanation on how to use the boards I/O devices and chip
selects will be also be discussed.

Calling the FUF form the Boot Code
Once the boot code receives a message and stores it in Hopper memory the header

is examined. If the command is not recognizes as a standard BC command it calls the
FUF. The boot code does this by calling an absolute memory address in ROM where the
FUF exists. Once the FUF is called it has full control over the GAB.

The FUF should be treated as a stand-alone program
The FUF should be treated as if it is a stand-alone program. This means that the

program has a function called “main” and all libraries such as “stdio.h” need to be include
if required (do not expect to use the libraries from the BC to save memory).

The main program should use a case statement. The switch statement will depend
on the command being executed.

EXAMPLE

#include <stdio.h>
#include <gfem.h>

void main()
{
 /* Program */
 switch(command)
 {

case command 1:
case command 2:
case command 3:

 }
}

 Accessing the HOPPER memory.
In the header file “gfem.h” a variable called “HOPDATA” is created. This is

actually a pointer to the memory location 0x6000h were the data is stored. The
HOPDATA variable should be treated as an array of 39KB for example.

EXAMPLE

int Read_hopper()
{
 USIGN8 x,y; /* one byte*/

 x = HOPDATA[0];
 y = HOPDATA[1];
 return(x+y);
}

void Write_hopper(int x,int y);
{
 int loop;

 HOPDATA[0] = 23;
 HOPDATA[5] = 0x12;
 HOPDATA[7] = (USIGN8) x; /* x is of type int need to change it to a byte */
 HOPDATA[22] = (USIGN8) y;
 For(loop=0;loop<=20;loop++)
 HOPDATA[loop+100] = 0;
}

Accessing the header.
The header like the HOPPER memory is passed along to the FUF as an array. The

array HOPCMD contains the information in the follow order.

HOPCMD[0] = node id
HOPCMD[1] = command
HOPCMD[2] =device type
HOPCMD[3] =group command
HOPCMD[4] = ERROR
HOPCMD[5] = xxxxxxx
HOPCMD[6] = (MS) data length
HOPCMD[7] = (LS) data length

NODE_ID COMMAND DEVICE TYPE GROUP CMD

ERROR --- DATA LENGTH

23 2415 167 80 31

23 2415 167 80 31

A macro in the file “gfem.h” sets up the GAB header into a structure. The macro called
“SETUP_PCKT” once called generates a variable called “pckt” the structure is shown
below.

typedef struct CMD_WORD
{
 USIGN8 cmd;
 USIGN8 node;
 USIGN8 devtype;
 USIGN8 grpcmd;
 unsigned int dlen;
 USIGN8 error;
} CMD_WORD;

CMD_WORD pckt;

Example

Main()
{
 SETUP_PCKT;
 call_f();
}

void call_f()
{

switch(pckt.cmd)
{
 case 0x10: /*set a device */

If(pckt.devtype == DAC) /*set DAC */
Set_DAC();

If(pckt.devtype == PRE_AMP) /* set pre_amp */
Set_PEAMP();

break;
.
.
.

 case 0x20 /*write port */
break;

}
}

How to Send data

Sending data to the main computer requires the use of a function called
“SENDBACK(X)” this function is located in the BC and is setup in the file “gfem.h”.
SENDBACK(x) sends x bytes of data stored in the hopper memory to the main computer.
EXAMPLE

 Send_test()
{
 int i;

 for(i=0;i<=100;i++)
 HOPDATA[i] = (USIGN8) i; /* load hopper memory */
 SENDBACK[100]; /* send 100 bytes to main computer */
 for(i=0;i<=100;i++)
 HOPDATA[100-i] = (USIGN8) i; /* load hopper memory */
 SENDBACK[100]; /* send another 100 bytes to main computer */
}

Calling an ERROR
The ERROR function in the boot code can be accessed by the FUF very simply. As

with SENDBACK it is defined in “gfem.h” as “ERROR(x)” where x is the error code to
be sent to the main computer. ERROR codes 1-10 are reserved for the BC except for
error code ‘8’ which will be used in all FUF programs. The error codes for the BC are
listed in section A of this document. All FUFs will have a unique error codes for there
specific hardware.

EXAMPLE

void call_f()
{

switch(pckt.cmd)
{
 case 0x10: read_mem() /* read memory */

break;
.
.
.

 case 0x20 send_test() /*write port */
break;

default ERROR(8); /* error 8 is called when the FUF has no such command in
 its function list*/

}
}

Using the GABs I/O devices

The table above shows the ports and chip selects that are available to the GAB
designer. The next few examples demonstrate how these ports can be used in the FUF
program.

SINGLE BIT EXAMPLES
EXAMPLE

bit_test()
{

int x;

If (PR == 0) /* check if PR bit is zero */ /* reads the bit*/
 /* “if (P3.5==0)” is equivalent to “if(PR==0)”*/

{
 Printf(“the pr bit is zero);
 X =PRR; /*store the value in PRR into x; “ 0 or 1” */
}

}

EXAMPLE

bit_write()
{

RXD = 0; /* set bit RXD to zero*/

NAME DISCRIPTION

RXD I/O BIT or recive serial data

TXD I/O BIT or transmit serial data

PRR I/O BIT

PR I/O BIT

PORT WRITE PORT 1 t direction Bit

CHIP SELECT
0- 7

user programable chip selects

CHIP SELECT
8-15

user programable chip selects

PORT 1 8 BIT bi-directional I/O PORT

HCS

LCS

P1

PW or P3.3

PR OR P3.5

PRR OR P3.2

TXD OR P3.1

RXD OR P3.0

C Name

Read_memory(100); /*dummy function */
RXD =1; /* set bit RXD to one */
P3.0 = 0; /* sets RXD to zero again*/
Printf(“rxd is set to zero”);
P3.0 = 1; /* sets it back to one */

}

EIGHT BIT PORT EXAMPLES

The 8 bit port uses bit PW or P3.3 to determine the direction of the port. If PW is
set to zero the port is set as output port. If set to one it is an input port.

EXAMPLE

Port_write()
{

PW = 0; /*set port to output */
P1 = 55; /* put the value 55 on the port.*/

 /* the port can be accses bit wise as well */
P1.0 = 0; /* set bit 0 to zero */
P1.1 = 1; /* set bit 1 to one */
P1.2 = 0; /* set bit 2 to zero */

}

EXAMPLE

Port_read()
{

USIGN8 x; /* create an 8 bit variable */

PW = 1; /*set port for input */

X = P1; /*store the value of port1 in x */

/* the port can be accses bit wise as well */

If(P1.0 == 0) /* check bit 0 in P1 */
Printf(“the bit is equal to zero in bit 0 of P1”);

}

EXAMPLE

PORT_MIX()
{

PW =1; /*set port for read */
If(P1.0 == 0) /* check bit 0 in P1 */
{/

PW=0; /*set port for write */
P1 = 00; /*set p1 to zero */

}

}

CHIP SELECTS EXAMPLES

The CHIP selects can be viewed as two memory mapped 8-bit output ports.
Where the first port (CS0-CS7) is located at 0xFEFD and the second (CS8-CS15) at
0xFEFE. Look at the table bellow to see how the chip selects are mapped to the data bits.

Memory
Location

D0 D1 D2 D3 D4 D5 D6 D7

0xFEFD CS0 CS1 CS2 CS3 CS4 CS5 CS6 CS7
0xFEFE CS8 CS9 CS10 CS11 CS12 CS13 CS14 CS15

EXAMPLE
This example will generate a pulse on a selected chip select line. All Chip Selects in

this program are active low.

void gen_cs(int x)
{

switch (x) {

case 0: (* (char xdata *) 0xfefd) = 0xfe; /* chip select 0*/
 (* (char xdata *) 0xfefd) = 0xff; /* clear */
 break;
case 1: (* (char xdata *) 0xfefd) = 0xfd; /* chip select 1*/

 (* (char xdata *) 0xfefd) = 0xff; /* clear */
 break;
case 2: (* (char xdata *) 0xfefd) = 0xfb; /* chip select 2*/
 (* (char xdata *) 0xfefd) = 0xff; /* clear */
 break;
case 3: (* (char xdata *) 0xfefd) = 0xf7; /* chip select 3*/
 (* (char xdata *) 0xfefd) = 0xff; /* clear */
 break;
case 4: (* (char xdata *) 0xfefd) = 0xef; /* chip select 4*/
 (* (char xdata *) 0xfefd) = 0xff; /* clear */
 break;
case 5: (* (char xdata *) 0xfefd) = 0xdf; /* chip select 5*/
 (* (char xdata *) 0xfefd) = 0xff; /* clear */
 break;
case 6: (* (char xdata *) 0xfefd) = 0xbf; /* chip select 6*/
 (* (char xdata *) 0xfefd) = 0xff; /* clear */
 break;
case 7: (* (char xdata *) 0xfefd) = 0x7f; /* chip select 7*/
 (* (char xdata *) 0xfefd) = 0xff; /* clear */
 break;

case 8: (* (char xdata *) 0xfefe) = 0xfe; /* chip select 8*/
 (* (char xdata *) 0xfefe) = 0xff; /* clear */
 break;
case 9: (* (char xdata *) 0xfefe) = 0xfd; /* chip select 9*/
 (* (char xdata *) 0xfefe) = 0xff; /* clear */
 break;
case 10: (* (char xdata *) 0xfefe) = 0xfb; /* chip select 10*/
 (* (char xdata *) 0xfefe) = 0xff; /* clear */
 break;
case 11: (* (char xdata *) 0xfefe) = 0xf7; /* chip select 11*/
 (* (char xdata *) 0xfefe) = 0xff; /* clear */
 break;
case 12: (* (char xdata *) 0xfefe) = 0xef; /* chip select 12*/
 (* (char xdata *) 0xfefe) = 0xff; /* clear */
 break;
case 13: (* (char xdata *) 0xfefe) = 0xdf; /* chip select 13*/
 (* (char xdata *) 0xfefe) = 0xff; /* clear */
 break;
case 14: (* (char xdata *) 0xfefe) = 0xbf; /* chip select 14*/
 (* (char xdata *) 0xfefe) = 0xff; /* clear */
 break;
case 15: (* (char xdata *) 0xfefe) = 0x7f; /* chip select 15*/
 (* (char xdata *) 0xfefe) = 0xff; /* clear */
 break;

 }
}

SAMPLE PROGRAM

/*
--

 SAMPLE FUF PROGRAM
--

*/
#include <gfem.h>
#include <command.h>

/* prototype declarations */

void main(void);
int call_f();
void setup_pckt();
void fuf_init();
void fuf_ver();
void fuf_wmem(int addr,USIGN8 val);
USIGN8 fuf_rmem(int addr);
void gen_cs_Llev(USIGN8 val);
void gen_cs_Ulev(USIGN8 val);

/*
--

MAIN
 void main(void)

This function is called by the boot program
--
*/

void main()
{
 SETUP_PCKT; /* set up the header in the variable pckt */
 call_f();
}
/* end of main */

/*

CALL function
 int call_f()

This function looks at packet header command and decides which function
to call. If the function does not exist it will return an error 8 to the
boot program

--
*/
int call_f()
{
 int addr;
 USIGN8 val;
 switch (pckt.cmd)
 {

case INIT_BOARD: /* init the board */
fuf_init();
break;

case FUF_VER: /*sends softwares name and version*/
fuf_ver();
break;

case WRITE_MEMORY: /* write a single memory location */
addr = ((HOPDATA[0] << 8) + HOPDATA[1]);
val = HOPDATA[2];
fuf_wmem(addr,val);
break;

case READ_MEMORY: /*read a single memory location */
addr = ((HOPDATA[0] << 8) + HOPDATA[1]);
HOPDATA[0] = fuf_rmem(addr);
SENDBACK(1); /* send the data to the main computer */
break;

case READ_PORT: /* read the 8 bit I/O port */
P3.3 = 1;
HOPDATA[0] = P1;
SENDBACK(1); /* send the data to the main computer */
break;

case WRITE_PORT: /* write the 8 bit I/O port */
P3.3 = 0;
P1 = HOPDATA[0];
break;

case GEN_CS_LLEV: * set the lower chip selects (cs0-cs7)*/
/* to any value */

gen_cs_llev(HOPDATA[0]);

break;
case GEN_CS_ULEV: /* set the upper chip selects (cs8-cs15)*/

/* to any value */
gen_cs_Ulev(HOPDATA[0]);
break;

 default :
 ERROR(8); /* call ERROR FUNCTION USING function DEFINED IN

GFEM.H */
/* ERROR 8 = NO such CMD*/
/* IT SENDS THE ERROR CODE TO THE CONTROL NODE

*/
 return(0);

 }
 return(1);
}
/*

FUF INIT
 void fuf_init()

This function initialized the board

--
*/
void fuf_init()
{
PW = 0;
(* (char xdata *) 0xfefe) = 0xff; /* clear cs */
(* (char xdata *) 0xfefd) = 0xff; /* clear cs */
}

/*

FUF version
 void fuf_ver()

This function sends to the main computer its program name and
version number

--
*/

void fuf_ver()
{

HOPDATA[0] = 'g';
HOPDATA[1] = 'f';

HOPDATA[2] = 'u;
HOPDATA[3] = 'f';
HOPDATA[4] = ' ';
HOPDATA[5] = 'v';
HOPDATA[6] = 'e';
HOPDATA[7] = 'r';
HOPDATA[8] = ' ';
HOPDATA[9] = '1';
HOPDATA[10] = '.';
HOPDATA[11] = '0';

 SENDBACK(12);
}

/*

FUF write memory
 void fuf_wmem()

This function writes a 8 bit value in to the memory location addr

--
*/

void fuf_wmem(int addr,USIGN8 val)
{
 (* (char xdata *) addr) = val;
}

/*

FUF read memory
 USIGN8 fuf_rmem()

This function reads an 8 bit value from the memory location addr

--
*/

USIGN8 fuf_rmem(int addr)
{

return((* (char xdata *) addr));
}
/*

generate lower chip select level
 void gen_cs_Llev()

This function sets the lower (cs0- cs7) chip selects to value determined

by val

--
*/
void gen_cs_Llev(USIGN8 val)
{
 LCS = val; /* set cs */
}

/*

generate upper chip select level
 void gen_cs_Ulev()

This function sets the upper (cs8- cs15) chip selects to value determined
by val

--
*/

void gen_cs_Ulev(USIGN8 val)
{
 HCS = val; /* set cs */
}

COMMAND.H

/* commands */
#define WRITE_MEMORY 0x12
#define READ_MEMORY 0X13
#define READ_PORT 0x14
#define WRITE_PORT 0x15
#define GEN_CS_LLEV 0x17
#define GEN_CS_ULEV 0x18
#define BIT_PORT_READ 0x19
#define BIT_PORT_WRITE 0x1a

GFEM.H

/* --*/
/* Project: FEM FUNCTIONS */
/* Filename: GFEM.H */
/* Description: set up memory and definitions for GFEM.C */
/* Version: 1.1 */
/* Author: JF */
/* History: Original 12/1/97 */
/* */
/* --*/

#include <io51.h>
#define USIGN8 char

/* data buffers located at 0x6000 to
acommodate the incomming packets */

#define HOPDATA ((USIGN8 *)0x016000)
/* This is the array to accsess the
packet header 8 bytes */

#define HOPCMD ((USIGN8 *)0x015ff8)
#define GUF ((int *)0x0107f0)

/* define pointers for the functions to call
an absolute memory locations */

void (*fblock)(int);
 /* these are the fixed memory locations

DO NOT CHANGE!!!! */

#define SENDBACK(x) {fblock = (void *) GUF[0]; (*fblock) (x);}
#define ERROR(x) {fblock = (void *) GUF[1]; (*fblock) (x);}

#define RXD P3.0
#define TXD P3.1
#define PRR P3.2
#define PR P3.5
#define PW P3.3
#define LCS (* (char xdata *) 0xfefd)
#define HCS (* (char xdata *) 0xfefe)
/*

 SETUP_PCKT;

Copy the packet header information into the pckt structure.

*/

#define SETUP_PCKT { pckt.cmd = HOPCMD[CMD]; pckt.node =
HOPCMD[NODEID];pckt.devtype=HOPCMD[DEVTYPE];pckt.grpcmd=HOPCMD[G
RPCMD];pckt.dlen= ((HOPCMD[DLEN] << 8) + HOPCMD[1+DLEN]);pckt.error=
HOPCMD[ERR];}

/* packet header information stored in
this structure*/

typedef struct CMD_WORD
{
 USIGN8 cmd;
 USIGN8 node;
 USIGN8 devtype;
 USIGN8 grpcmd;
 unsigned int dlen;
 USIGN8 error;
} CMD_WORD;

CMD_WORD pckt;

#define PUB 1 /* define public broadcast */

/* header locations*/
#define CMD 1
#define NODEID 0
#define DEVTYPE 2
#define GRPCMD 3
#define DLEN 6
#define UDLEN 6
#define lDLEN 7
#define ERR 4
#define OK 0

/* COMMANDS CODES */

#define INIT_BOARD 0x10
#define FUF_VER 0x11

SECTION (A)

GAB HEADER

NODE_ID COMMAND DEVICE TYPE GROUP CMD

ERROR --- DATA LENGTH

23 2415 167 80 31

23 2415 167 80 31

COMMAND WORD FIG 1.

FIELD BITS FUNCTION
NODE_ID 0..7 FEM specific field used to select a node at the front end.

COMMAND 8..15 FEM specific field specifies function for FEM's to perform.
DEVICE TYPE 16..23 Used to select unique device type.
GROUP CMD 24..31 Used to select a group of FEM’s

ERROR 0..7 FEM specific field used to return error codes to the control.
---- 8..15 NOT DEFINED

DATA LENGTH 16..31 Specifies the total number of bytes in hopper command, including
command word and data,

COMMAND WORD TABLE 1.

• The control node has to have a NODE_ID = 0x01.
• The NODE_ ID's = 0x02 – 0x0f and 0xF0 -- 0xFF are reserved.
• The COMMAND field must be placed at the beginning of the hopper memory.
• The GROUP COMMAND = 0x01 is reserved for a broadcast.
• The GROUP COMMAND = 0x00 is reserved for a single node transfer.
• The NODE_ID = 0x00 when sending a packet to more then one node
• The ERROR field must be set to 0x00 when the control node transmits data.
• The ERROR filed will return a value other than zero when an error occurs at a FEM. (data length =

0).
• The ERROR filed will be set to 0x01 when a node is reset for example NODE_ID = 5 & ERROR = 1

è node 5 was reset.
• The control node must be able to receive an ERROR PACKET from any FEM at any given point in

time.

GAB ERROR CODES

ERROR CODE DESCRIPTION
0 E_OK
1 System Reset Occurred
2 Bad Packet Received Over Network
3 Time Out ERROR
4 Flash EEPROM Was Not Programmed Correctly
5 PGB NOT SET (FUF section of ROM is empty)
6 Incorrect Number of Bytes Received
7 Duplicate Node Id detected
8 UNKOWN COMMAND CODE

GAB JUMPER SETTINGS

J1 & J2 biasing resistors
Biasing ON J1,J2 closed
Biasing OFF J1,J2 open

J3 & J4 normal or (emulator)
Normal run J3 closed J4 closed
Emulator J3 open J4 closed

J5, J6 MAX 1480 isolated power
J7 Internal DC to DC J5 closed J6,J7 open

External Power (magnetic field) J5 open J6,J7 closed

j2 j1

j3 j4

SMC COM20051

LATTICE
1032

TTL

TTL

crystal

MAX 1480A

led

max
708

ext
pow

ext
pow

j5

j6

j7

RES
PACK

lattice prog

SECTION (B)

BOOT CODE FUNCTION CALLS

This section will describe how to call Boot Code functions and describe what they
do and what they return. All of the functions use the GAB header shown in Section (A).

PROGRAM FLASH ROM
This function once called can store any data in the hopper memory to the Flash

ROM starting at location 0x4000H. This function is typically used to store the user
program FUF in the ROM.

Loading the header

Node ID = Node-ID of GAB or ‘0’ for broadcast;
Command = 1
Device Type = don’t care
Group_CMD = 0 for single node , 1 for broadcast , 0 for group transfer
ERROR = 0
DATA LEN = xxxx number of bytes to be stored in the ROM

RETURN
One byte set at 77 with command set at 01

ERROR
O = ROM Programming successful
4 = ROM Programming failed

RESET BOARD
This function generates a software reset for the GAB.

Loading

Node ID = Node-ID of GAB or ‘0’ for broadcast;
Command = 2
Device Type = don’t care
Group_CMD = 0 for single node , 1 for broadcast , 0 for group transfer
ERROR = 0
DATA LEN = 0

 RETURN
NO DATA

 ERROR
1 = BOARD RESET

BOARD RESPOND
This function once called echoes back its command with the boards node id.

Loading the header

Node ID = Node-ID of GAB or ‘0’ for broadcast;
Command = 3
Device Type = don’t care
Group_CMD = 0 for single node , 1 for broadcast , 0 for group transfer
ERROR = 0
DATA LEN = 0

RETURN
GAB Header Node ID is set to the responding boards ID
NO DATA

ERROR
0 = successful

ECHO MEMORY
This function echo’s the contents of the GABS Hopper memory. The amount of

data to be echoed is stored in the DATA_LEN parameter of the HEADER.

Loading the header

Node ID = Node-ID of GAB or ‘0’ for broadcast;
Command = 4
Device Type = don’t care
Group_CMD = 0 for single node , 1 for broadcast , 0 for group transfer
ERROR = 0
DATA LEN = xxxx Amount of data that will be echoed

RETURN
The contents of the Hopper memory requested

ERROR
0 = successful

TURN OFF TOKEN
This function puts the node in a standby mode where it does not receive the token.

When all the nodes of the network are put into this mode the token stops thereby reducing
any noise this board would create by the token.

Loading the header

Node ID = ‘0’ for broadcast;
Command = 5

Device Type = don’t care
Group_CMD = 1 for broadcast
ERROR = 0
DATA LEN = 0

RETURN
NO DATA (NODE OFF LINE)

TURN ON TOKEN
This function takes the node off a standby mode so that it does receive the token.

Loading the header

Node ID = ‘0’ for broadcast;
Command = 6
Device Type = don’t care
Group_CMD = 1 for broadcast
ERROR = 0
DATA LEN = 0

RETURN
NO DATA (NODE ON LINE)

ACTIVE NETWORK MAP
This function once called echoes back its command with the boards node id.

Loading the header

Node ID = Node-ID of GAB or ‘0’ for broadcast;
Command = 7
Device Type = don’t care
Group_CMD = 0 for single node , 1 for broadcast , 0 for group transfer
ERROR = 0
DATA LEN = 0

RETURN
GAB Header Node ID is set to the responding boards ID
NO DATA

ERROR
0 = successful

BOOT CODE VERSION NUMBER
This function once called sends back its version number in the data field.

Loading the header

Node ID = Node-ID of GAB or ‘0’ for broadcast;
Command = 8

Device Type = don’t care
Group_CMD = 0 for single node , 1 for broadcast , 0 for group transfer
ERROR = 0
DATA LEN = 0

RETURN
GAB Header Node ID is set to the responding boards ID
The boot code version number.

ERROR
0 = successful

CALL USER FUNCTION
This function calls the FUF

Loading the header

Node ID = Node-ID of GAB or ‘0’ for broadcast;
Command = (0x10 - 0xFF)
Device Type = user defined
Group_CMD = 0 for single node , 1 for broadcast , 0 for group transfer
ERROR = 0
DATA LEN = xxxx number of bytes to be transfered

RETURN
User defined

ERROR
5 = No program in ROM
8 = No command is not a user function
x = USER DEFINED

SECTION (C)

What you need to get started.

1. ARCNET interface board for the PC.

Can be purchased for Contemporary Control System, INC.
Part number : PCX20-485
Tel number : 708 963-7070
Web page : http://www.ccontrol.com

2. IAR 8051 C compiler

PHENIX groups can

CALL Jack Fried at (516) 344-4441
Or send email to: jfried@inst.inst.bnl.gov

ALL other groups must purchase the compiler form:

IAR SYSTEMS SOFTWARE, INC
1 Maritime Plaza
San Francisco, CA 94111
(415) 765-5500

3. A GENERIC ARCNET BOARD (GAB)

CALL Jack Fried at (516) 344-4441
Or send email to: jfried@inst.inst.bnl.gov

4. Software tool kit for the GAB

Can be Downloaded form the web at
 http://www.inst.bnl.gov/~jfried/arcnet

5. This manual

